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group m35, as opposed to 235 (noncentrosymmetric). 
The reasons for this choice of point group are 
explained by the authors in terms of transmission 
electron microscopy (TEM) analysis. No inversion 
domains could be found in TEM images of A1-Cu-Fe 
samples [Rzepski, Quivy, Calvayrac, Cornier- 
Quiquandon & Gratias (1989), §3; Cornier- 
Quiquandon, Quivy, Lef~bvre, Elkaim, Heger, Katz 
& Gratias (1991), footnote 36]. In other words, no 
convincing evidence of lack of centrosymmetry was 
found and centrosymmetry could not be ruled out 
altogether. 

In conclusion, we have demonstrated the feasibility 
of phasing structure factors in a quasicrystal with use 
of multiple Bragg scattering. The phase values for the 
triplet invariants obtained by this method are model 
independent and can be used to assess different struc- 
tural models. 
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Abstract 

The formalism of the N-beam dynamical theory of 
X-ray diffraction is extended to include all possible 
incident and diffracted polarizations. With this new 
formalism it is shown that the intensity of a simul- 
taneously excited Bragg reflection can be described 
through a polarization density matrix that involves 
the Stokes-Poincar6 parameters. In particular, the 
multibeam diffracted intensity is sensitive to the cir- 
cularly polarized component in the incident beam 
and the structure-factor phases of the diffracting crys- 
tal. Experimental results on the GaAs 442 and Ge 
333 reflections confirm the theoretical calculations. 

© 1993 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

This kind of measurement can provide useful acentric 
phase information and can also be used for circular 
X-ray polarimetry. Another feature of N-beam 
diffraction is its ability to turn a linear polarization 
into an elliptical polarization, which means it can be 
used as an X-ray phase plate. 

Introduction 

X-ray polarization plays an important role in every 
scattering and diffraction experiment. In crystallogra- 
phy, one needs to use the polarization-factor correc- 
tion in order to obtain structure factors from diffrac- 
ted intensities (Warren, 1969). In X-ray physics and 
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material science, polarization analysis can often 
reveal interesting features of the magnetic properties 
and atomic-site symmetries of the diffracting material 
(Templeton & Templeton, 1985; Blume & Gibbs, 
1988; Belyakov & Dmitrienko, 1989; Kirfel, Petcov 
& Eichhorn, 1991; Finkelstein, Shen & Shastri, 1992). 
The increasingly available energy and polarization 
tunabilities of many intense synchrotron sources 
promise to provide experimenters with an extra 
dimension in the analysis of X-ray polarization in 
future diffraction experiments. It is, therefore, 
worthwhile to re-examine and extend some of the 
well established fields in X-ray diffraction. One such 
field is that of multiple-beam Bragg diffraction. 
Because of the co-existing effects of multibeam inter- 
ference and polarization mixing (Shen, 1991), some 
new and interesting features in multibeam diffraction 
can emerge if one includes general elliptically polar- 
ized X-rays in the incident beam. These new features 
include phase determination on noncentrosymmetric 
crystals (Shen & Finkelstein, 1990), complete charac- 
terization of an elliptical polarization of an X-ray 
beam (Shen & Finkelstein, 1992) and utilization of 
multibeam diffraction as an X-ray circular phase 
plate. 

Multiple-beam diffraction occurs in a crystal when 
two or more atomic planes satisfy the Bragg condi- 
tions simultaneously. The process usually gives rise 
to a secondary peak (Renninger peak) in the intensity 
of a Bragg reflection, H, when the diffraction crystal 
is rotated around the scattering vector H (Renninger, 
1937; Cole, Chambers & Dunn, 1962). The reflection 
H is usually termed the main reflection and the 
rotation is described by an azimuthal angle, ~o. 
Throughout this article, we use the convention that 
the symbol H / L  refers to a multiple-beam situation 
with the Renninger reflection L on the main reflection 
H. Theoretical investigations of multiple-reflection 
intensities have been extensive, ranging from an 
energy-balancing kinematical approach (Moon & 
Shull, 1964; Zachariasen, 1965) to a full N-beam 
dynamical theory formalism, developed by Colella 
(1974). The main purpose of this article is to incorpor- 
ate a density-matrix representation into Colella's 
(1974) formalism, so that multiple-beam dynamical 
calculations can be performed in a straightforward 
way for any incident-beam polarization. It also allows 
for convenient calculations of the scattered polariz- 
ation in a multibeam diffraction process. Applications 
of the new formalism are presented in several 
examples and are compared with experimental results 
obtained using elliptically polarized synchrotron 
radiation. 
The dynamical theory of X-ray diffraction calculates 
a diffracted intensity in two steps (Batterman & Cole, 
1964). First, it solves an eigenvalue equation to obtain 
all the possible wave vectors that can exist inside the 

crystal; the result is the so-called dispersion surface. 
Second, it matches the boundary conditions at the 
crystal surface to calculate the relative amplitudes of 
the possible wavefields inside and outside the crystal 
for a given incident-beam direction ko and polariz- 
ation Do. In general, both the incident and the diffrac- 
ted wavefields, Do and DH, outside the crystal can 
be decomposed into polarization directions per- 
pendicular (tr) and parallel (7r) to the scattering plane 
defined by k0 and H. The procedure is the same in 
the general N-beam case as in the two-beam case. 
The key result of the N-beam dynamical theory is 
that the diffracted wavefield DH now depends upon 
other inside wavefields, say, L, rather than just upon 
the incident O and the diffracted H waves as in the 
two-beam case. 

The computational procedure in the case of N 
beams is extensive, as one might imagine. One needs 
to diagonalize a 4N x 4N eigenvalue matrix in the 
first step and to solve a 4N linear equation system 
in the second step. Fortunately, both problems have 
been solved in Colella's (1974) formalism. To general- 
ize for an arbitrary incident polarization, one only 
needs to calculate a 2 x 2 matrix, {M}, using Colella's 
formalism, that relates the incident O beam 
(D0~, D0,~) and the main reflected H beam 
(DH~,, DH~) outside the crystal. The matrix {M} con- 
tains four complex numbers, M ~ ,  M=~, M~,~ and 
M==, representing the tr---,tr, 7r~tr,  tr----rr and rr--,rr 
diffracted wavefields, respectively. 

DHcr =[M~,~ M~][Do~ 1 (1) 
Durr J M,~ M~ Do~ " 

The possible existence of the off-diagonal matrix ele- 
ments in {M} indicates that the polarization states 
can be mixed in a multiple-beam diffraction process 
(Shen & Finkelstein, 1992). 

Although (1) can accommodate all pure incident- 
beam polarizations, it is inconvenient to calculate the 
diffracted intensity if the incident beam is partially 
polarized. The best way to overcome this difficulty is 
to define the incident polarization with a density 
matrix, {p}. As we know, in optics, the intensity and 
polarization of any electromagnetic plane wave, D-- 
(D~, D,~ei~), can be completely characterized by the 
four Stokes parameters (Born & Wolf, 1983): So = 
D 2+D~, sl=DZo-D~, Sg=2DoD~cose and s3= 
2D~D,~ sin e, which represent the total intensity, the 
intensity difference between the 0 and the 90 ° polariz- 
ations, the intensity difference between the 45 and 
the - 4 5  ° linear polarizations and the intensity 

d~llerence between the right- and the left-handed 
circular polarizations, respectively. If one is interested 
only in the polarization aspect then one can use 
the normalized Stokes parameters: (P~, P2, P3) = 
(sl, s2, Sa)/So. The vector P = (PI, P2, P3) is called the 
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Poincard vector of polarization. Any X-ray plane wave 
can be represented by a vector P which defines a 
point in Poincar6 space (Fig. 1). A completely polar- 
ized beam corresponds to a point on the Poincar6 
sphere IPI-1, while partially polarized beams corre- 
spond to the points within the sphere (IPl< 1). A 
polarization density matrix, {p}, for a given incident 
X-ray polarization P = (P1, P2, P3) is defined by 

l r  I + P ,  P2-iP3] (2) 
{P}=~LP2+iP3 l - P ,  I" 

When the incident X-rays are scattered or diffracted 
by {M}, its polarization P and thus {p} change in the 
following way: 

{p'}= {MoM*}, (3) 

where {p'} is the density matrix of the diffracted beam 
and the superscript dagger indicates the Hermitian 
conjugate. The diffracted intensity, I, is expressed by 
the trace of the new density matrix (Blume & Gibbs, 
1988): 

I = Tr {P'}. (4) 

To summarize the above discussion, an N-beam 
dynamical calculation with a general incident-beam 
polarization proceeds as follows: (i) Calculate the 
2 x 2 matrix {M} using Colella's NBEAM program 
(Colella, 1974). This step involves four independent 
calculations, of the tr---,tr, rr---,tr, o'---,rr and 7r---,Tr 
diffracted wavefields. (ii) Define a density 
matrix {p} with the polarization parameters 
(P1, P2, P3) that characterize the incident X-ray beam. 
(iii) Calculate the diffracted intensity using (3) and 
(4). A version of Colella's original NBEAM program 
has been modified to include all three steps and the 
new program is named NBEAM-MTRX. 

_45 ° 

Pl 

Fig. 1. Poincar6 representation of  X-ray polarization. Any polariz- 
ation of an X-ray beam can be specified by a vector P =  
(Pt ,  P2, P3) in Poincar6 space. In general, [P]-<I, with the 
equality corresponding to a completely polarized beam and the 
inequality to a partially polarized one. 

Applications of the new formalism 

The new NBEAM-MTRX formalism provides a use- 
ful tool for doing multiple-beam dynamical diffrac- 
tion calculations with a general incident polarization. 
We show three examples of the application of the 
new formalism and make comparisons with ex- 
periments using elliptically polarized synchrotron 
radiation. 

1. GaAs 442: solving acentric phase problem~ 

It has been known that the interference effect in a 
multiple-beam diffraction process can be used to 
extract lost crystallographic phase information from 
diffraction intensities (Colella, 1974; Post, 1977; 
Chapman, Yoder & Colella, 1981; Chang, 1982; 
Juretschke, 1982; Shen, 1986; Shen & Colella, 1986; 
Hummer & Billy, 1986; Shen & Colella, 1987, 1988; 
Chang & Tang, 1988; Hummer, Weckert & Bondza, 
1989; Shen & Finkelstein, 1990). As realized by 
several authors, when linearly polarized or unpolar- 
ized X-rays are used as the incident beam, the multi- 
beam interference effect on the wings of a multiple 
reflection peak contains information on only the 
cosine of the relative phase or the real part of the 
phase factor. The information on the sine of the 
relative phase, which is directly related to the non- 
centrosymmetry of a crystal, is still missing in such 
an experiment. Although such phase information may 
exist at the center of a multiple-reflection peak 
(Hummer & Billy, 1986; Chang & Tang, 1988; 
Hummer, Weckert & Bondza, 1989), it is usually 
affected by the kinematic effect if one uses the 
dynamical theory or the extinction effect if one uses 
the kinematic theory. Recently it has been demon- 
strated by Shen & Finkelstein (1990) that another 
way to obtain the noncentrosymmetric phase infor- 
mation is to utilize circularly polarized X-rays as the 
incident beam in a multiple-beam diffraction experi- 
ment. Because of the polarization mixing and the 
interference between complex polarization and com- 
plex phase factors, the interference intensity on the 
wings of the multiple-reflection peak will depend 
upon both the real and imaginary parts of the phase 
factor. 

As an example to illustrate an N-beam dynamical 
calculation and to compare it with the results of an 
experiment, we repeat the calculation that was carried 
out in our earlier publication with the new NBEAM- 
MTRX formalism and compare the result with our 
experimental data. The experiment was performed at 
a bending magnet station, D1, at the Cornell High- 
Energy Synchrotron Source (CHESS). The station was 
equipped with a double-bounce Si (111) mono- 
chromator diffracting in the vertical plane and 
was tuned to 1.3 A X-ray wavelength. In the experi- 
ment, we measured three-beam diffraction profiles 
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on a GaAs 442 main reflection using elliptically 
polarized (Jackson, 1975) synchrotron radiation 
above and below the electron (position) orbital plane. 
The GaAs crystal surface was parallel to the (111) 
atomic planes. Fig. 2 shows the three-beam profiles 
around the 442/151 multiple reflection, with (a) left- 
handed elliptical polarization at 0.11 mrad above and 
(b) right-handed elliptical polarization at 0.11 mrad 
below the orbital plane. Each data point is an 
integrated intensity over a 442 rocking curve. GaAs 
is a noncentrosymmetric polar crystal. In a given 

442/151 multiple reflection and the second case to a 
phase 6 = - 90 °. 

A three-beam dynamical calculation is performed 
on the GaAs 442/151 reflection using the new 
N B E A M - M T R X  program and the results are shown 
in Figs. 2 and 3. The solid curves in Fig. 2 are 
integrated intensities using 8 - -+90  ° and the dashed 
curves are those obtained with 6 " - - 9 0  °. The polar- 
ization of the incident beam is assumed to be P =  

diffraction geometry the GaAs can have an atomic 
arrangement with either the Ga atoms at the 
+(1/8,  1/8, 1/8) sites and As atoms at the 
- (1 /8 ,  1/8, 1/8) sites, or an arrangement with the Ga 6 
atoms at the - (1 /8 ,  1/8, 1/8) sites and As atoms at 
the +(1/8, 1/8, 1/8) sites. The first situation corre- 
sponds to a phase triplet 6 = + 9 0  ° for the 

8 I ' ' I ' i  i ' ' ' I , . o  

/ (a) II/, P,=O.  ll o8 ' 

~_ 0 . 6  / - - - - - - - - - ~ l l l l l l / / L ~  

6 

8 II = II " ' l , -  (a) 

(b) 

2 6 

4 ~ ~ ~ - -  - [  1.0 

- - -   =-9oo / 0.8 ro 
, , , , , , - -  = .  / - - - - ~ - J l l I l l l l / \  ~ t _--< 

( d e g r e e s )  

 . ree-  am int rfor n  ,nt nsity of Oa s  0.0 
442/151 using eUiptically polarized synchrotron radiation (a) 0.2 ~ ~ _  
above and (b) below the orbital plane. The experimental data 
are shown as squares. The curves shown are three-beam dynami- 0 6 
cal calculations using 8 = 90 ° (solid curve) and 8 = -90  ° (dashed 
curve). The incident polarization used in the calculation is P = 
(0.77, 0, 0.57) in (a) and P =  (0.77, 0,-0.57) in (b), which are 
consistent with the synchrotron-radiation properties and the 
experimental conditions. The azimuthal-angle origin is defined 
by the convention that the reciprocal vector ( -1 ,  1, 0) is lying 
on the diffraction plane, with a projection that is antiparallel to 
the incident wave vector k o. The surface normal of the crystal 
is along the [111] direction. 

- 0 . 0 3 - 0 . 0 2 - 0 . 0 1  0 0.01 0.02 0.03 

So (Degrees) 
(b) 

Fig. 3. Calculated reflectivity of the GaAs 442/151 multiple 
reflection as a function of rocking-curve angle 0 and azimuthal 
angle q~. The incident polarization is assumed to be (a) P =  
(0.77, 0, 0.57) and (b) P = (0.77, 0, -0.57). The definitions of the 
zero points on both the 0 and q~ axes are arbitrary. 
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(0.77, 0, 0.57) above the orbital plane and P =  
(0.77, 0, -0.57) below the orbital plane. These values 
of the polarization parameters have been derived from 
three multiple-beam diffraction profiles measured in 
an experiment and the procedure has been discussed 
elsewhere (Shen & Finkelstein, 1992). Fig. 2 shows 
very good agreement between the theory and the 
experiment and indicates unambiguously that the cor- 
rect relative phase 8 is +90 ° for our diffraction 
geometry. This demonstrates that a circularly polar- 
ized X-ray beam can be utilized to provide acentric 
phase information through a multiple-beam diffrac- 
tion process. 

Figs. 3(a) and (b) show the results of NBEAM- 
M T R X  calculations for the GaAs 442 reflection as 
functions of both the azimuthal angle ~ and the 
rocking angle 0 near the 151 multiple reflection. 
The incident polarization is P = (0.77, 0, 0.57) for Fig. 
3(a) and P = (0.77, 0,-0.57) for Fig. 3(b). The plots 
are very informative in illustrating the behavior of 
the asymmetric intensity profiles caused by multiple- 
beam excitation. There are basically two ridges of 
high reflectivities, running parallel to the ~ axis and 
the 0 axis, respectively. The one parallel to the ¢ axis 
(independent of ~) is caused by the main reflection 
442 and the other is due to the 151 multiple reflec- 
tion. As expected, the greatest interference between 
them occurs where these two ridges meet. Asymmetric 
reflectivity profiles should exist in both the ~ and 0 
directions, but the ¢ dependence extends to -0.01 °, 
which is about 100 times broader than the 0 depen- 
dence. Therefore, it should be much easier to observe 
an asymmetry pattern in an azimuthal scan. We may 
also note that the 0 range shown in Fig. 3 is much 
smaller than the incident-beam divergence under 
typical experimental conditions ( -100  ~rad in our 
experiment). Thus the P-integrated intensity comes 
out naturally in an experiment even without rocking 
8. As Fig. 3 shows, only in the P-integrated intensity 
will a strong peak at ~ = 0 appear, because of the 
long and strong ridge due to the multiple reflection. 

Fig. 3 clearly shows that the intensity asymmetry 
along the main reflection ridge (parallel to the ~ axis) 
is reversed when the handedness of the elliptical 
polarization is switched. Since this effect occurs out- 
side the full excitation width of the multiple reflection, 
and the main reflection, GaAs 442, is relatively 
weak, one can apply a perturbation theory based on 
kinematic scattering to fully explain the multiple- 
beam interference effect (Shen, 1986). With the use 
of such a perturbation theory, it is straightforward to 
show that the circular polarization effect in the multi- 
beam interference intensity on the wings of a multiple 
reflection depends exclusively on the sine of the three- 
beam phase triplet 8 (Shen & Finkelstein, 1992): 

IcircularOC(-Mrr~r+M~rrr cos 28) sin tse3, (5) 

where M=,~ and M,,= are the off-diagonal elements 
of {M} defined in (1), 0 is the Bragg angle of the 
main reflection H and P3 is the purity of the circular 
polarization of the incident beam. Equation (5) 
implies that, with a known crystal structure and, there- 
fore, a known 8, one can use the same multibeam 
interference effect to measure the degree of circular 
polarization of an X-ray beam, as discussed in earlier 
publications. 

2. Germanium 333: strong main reflection 

On the sides of a multiple reflection peak, either 
the N-beam dynamical theory (Colella, 1974) or the 
modified two-beam perturbation theory (Juretschke, 
1982; Shen, 1986) can be applied to calculate the 
multiple-beam interference. At the center of a 
multiple-reflection peak, however, the perturbational 
approaches fail and a full N-beam calculation is 
usually required. In this section such a calculation 
on the Ge 333 reflection is slaown and the results 
are compared with experimental measurements. 

Equation (5) reveals that, in order for the circular 
polarization dependence in the neighborhood of a 
multiple reflection to be observed, a noncentrosym- 
metric crystal is necessary to provide a nonzero sin 8, 
if anomalous dispersion is ignored. On the other 
hand, it is well known that by sweeping through the 
full excitation width of any Bragg reflection, the 
diffracted wave field changes in phase from 0 to ~r 
relative to the incident beam in addition to undergoing 
the kinematic phase shift due to the structure factor 
(Bedzyk & Materlik, 1985). This implies that there 
should exist a phase variation, u(~0), within the range 
of full excitation of a multiple reflection, that provides 
nonvanishing sin [6+  u(~0)] even for a centrosym- 
metric crystal (where 6 can be only 0 or ~r). For 
centrosymmetric crystals, therefore, the diffracted 
intensity near the center of a multiple reflection 
should be sensitive to circular polarization in the 
incident beam. 

Fig. 4 shows the calculated Ge 333/133 multiple- 
beam reflectivities as a function of the 333 rocking- 
curve angle 0 and its azimuthal angle q~, with right- 
handed circular polarization P = (0, 0, 1) in Fig. 4(a) 
and left-handed polarization P=(0 ,  0, - 1 )  in Fig. 
4(b). The results appear very different from the case of 
GaAs 442/151, in several ways. First, the main- 
reflection rocking curve is much wider than that of the 
GaAs 442 because Ge 333 is a much stronger reflec- 
tion. Second, the ridge due to the multiple reflection, 
135, is weak outside the main-reflection rocking curve 
because the 133 is a reflection with a similar strength 
to the 333. Third, the multibeam interaction occurs in 
a range of azimuthal angles that is comparable to the 
rocking-curve width of the main reflection, whereas in 
the case of GaAs 442 the interaction extends to a 
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range that is hundreds of times wider than the 442 
rocking width. The reason for this is that the weak 442 
wavefield can interfere with the weakly excited strong 
reflection 151 and the maximum interference should 
occur at the azimuthal angles where the 442 and the 
151 wavefields have similar strengths. 

Despite the differences between Figs. 3 and 4, Figs. 
4(a) and (b) do exhibit a distinct difference in reflec- 
tivity when the sense of the polarization handedness 
is switched. The circular handedness also strongly 
affects the 0-integrated intensities, which are shown 
in Fig. 5. As one can see, the two intensity profiles 
in Fig. 5 do not resemble the sense of asymmetry 
reversal as in the case of GaAs 442/151 multiple 
reflection in Fig. 2. This difference can again be 
explained by the strengths of the main reflections. 

; / 
., - ~ / 2 0  

:' ~ I0 

,.°II 
0.5 

O l  j , i 
-0.004 -0.002 0 0.002 0.004 

~p (Degrees) 

(a) 

The Ge 333 is a strong reflection and, therefore, has 
a well defined dynamical phase change of 77 within 
its excitation width. It is this phase change that biases 
the asymmetry in the interference intensity. The GaAs 
442, on the other hand, is a relatively weak reflection 
and is more kinematically excited. Its intrinsic rocking- 
curve width is only - 1.3 Ix rad, compared to - 18 Ix rad 
in the case of Ge 333. Therefore, the dynamical 
phase change for the GaAs 442 is not well defined 
and plays a much lesser role in the three-beam inter- 
ference. The effect is then dominated by the phase 
change of the multiple reflection 151 which causes 
the interference intensity that can be correctly 
described by (5). 

To confirm the circular polarization dependence 
of the Ge 333/133 reflection, we performed an 
experiment at the CHESS D1 slmtion, using the ellipti- 
cally polarized off-orbital plane radiation. The station 
for this experiment was set up with a single-crystal 
horizontal diffracting Si (111) monochromator  pre- 
ceded by a total reflecting mirror. The mono- 
chromator provided 1.5 A X-rays incident on the 
germanium sample. The measurement of three-beam 
diffraction profiles on the 333/133 were obtained 
above and below the orbital plane where the incident 
synchrotron radiation is ~90% circularly polarized 
P = (0.43, 0, +0.90), according to a calculation based 
on synchrotron properties. The measured intensity 
profiles, shown in Figs. 6(a) and (b), closely resemble 
the results of the N B E A M - M T R X  calculations, 
shown in Fig. 5. With P = (0.43, 0, __+ 0.90) and convo- 
lution with a Gaussian instrumental function (o-= 
0.007°), the theory is in good agreement with the 
experimental results, as shown by the solid curves in 
Fig. 6. 

/ 
/ 

30 

20 

1.0 

~ 0 . 5  
-I0 

-20 

q~ 

0 ~ - - 3 0  
-0.004 -0.002 0 0.002 0.004 

(Degrees) 
(b) 

Fig. 4. Calculated reflectivity of the Ge 333/133 reflection as a 
function of rocking angle 0 and azimuthal angle ~0. The incident 
polarization used in the calculation is (a) P= (0, 0, 1) and (b) 
P = (0, 0, -1). The definitions of the zero points on both the 0 
and ~, axes are arbitrary. 

g-. 
I 
c) 

1,%.0 

Oe 333 / 13-3 

X \ 
v 

~P3=- I  

" ~  t I I 

-o 10.0 \ f 

tJ P3=1 Y'. _ -- 
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'o ' c; 5 . 0 - 0 .  0 4 - 0 . 0 0 2  0 0. 02 0.004 
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Fig. 5. Calculated integrated intensities as a function of azimuthal 
angle p for the Ge 333/133 reflection. The incident polarization 
is P = (0, 0, 1) for the solid curve and P = (0, 0, -1) for the dashed 
curve. The definition of the zero point on the p axis is arbitrary. 
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Both the Ge 333 and the GaAs 442 series can 
be used as circular polarization analyzers. The 
Ge 333 has the advantage of high reflectivity but 
requires a highly collimated beam. The GaAs 442 
has a lower reflectivity but can tolerate a moderate 
angular divergence in the incident beam. The choice 
of the two types, strong or weak main reflection, will 
be dependent  on specific experimental conditions. 

3. X - ray  phase plate: circular polarizer 

Creating circularly polarized X-ray beams by crys- 
tal optics has attracted great interest in recent years. 
Using the effect ofbirefringence within a Bragg reflec- 
tion, Mills (1988) demonstrated that the Laue trans- 
mitted beam can be circularly polarized if the crystal 
thickness is correct for the X-ray wavelength. Hirano, 
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Fig. 6. Three-beam intensity profiles of the Ge 333/133 reflection. 
The experimental results (open circles) are obtained using ellipti- 
cally polarized synchrotron radiation (a) above and (b) below 
the orbital plane. The error bars correspond to three times the 
standard deviation of accumulated counts at each ~o position. 
The solid curves are three-beam dynamical calculations using 
incident polarization of (a) P=(0.43,0,0.90) and (b) P= 
(0.43, 0, -0.90). These polarization parameters are derived from 
the synchrotron-radiation properties and the experimental set-up. 
The azimuthal-angle origin is defined by the convention that the 
reciprocal vector (0, 1, - I) is lying on the diffraction plane with 
a projection that is antiparallel to the incident wave vector k0. 
The surface normal of the crystal is assumed to be along the 
[ 111 ] direction. 

Izumi, Ishikawa, Annaka & Kikuta (1991) showed 
the same effect on the tails of a reflection by using 
the Bragg transmitted beam. It was shown by 
Briimmer, Eisenschmidt & H6che (1984) and more 
recently by Batterman (1992) that, by using multiple 
bounces, circular polarization can be achieved also 
on a Bragg reflected beam. 

A new way of making an X-ray circular phase 
plate is to use multibeam diffraction since this can 
turn a linearly polarized incident beam into one with 
circular or elliptical polarization. The reason is 
simple. First, we know that a multiple-beam diffrac- 
tion process can provide a 7r-polarization component 
from a pure o'-polarized incident beam. Second, the 
7r component from the multibeam process can have 
a phase shift, 8 + u(~p), relative to the or diffracted 
wave of the main reflection. The combination of these 
two effects will naturally give rise to an elliptically 
polarized X-ray beam. 

With (3), it is straightforward to show that the 
Poincar6 polarization components P ' =  (P~, P~, P~) 
of the diffracted beam are given by 

P'l -- ( p ~ , - p ~22) / I, 

P~= ( P ~  + P~2)/ I, (6) 

P'3= ( p'2, - p i2) l  iI, 

where I = p ~ l + p ~  2 is the intensity of the diffracted 
beam. For a multiple-beam diffraction process, once 
the matrix {M} is calculated through the N B E A M  
program, the polarization components of the diffrac- 
ted beam are readily obtained using (3) and (6). 

An example of the results of such calculations is 
shown in Fig. 7. The multiple-beam combination is 
the GaAs 442/151. To be consistent with our first 
example, we assume the same surface orientation 
(111) in the calculation. The incident beam is assumed 
to be purely or polarized: P =  (1, 0, 0). In Fig. 7, we 
show the calculated circular component P~ in the 
diffracted beam as functions of azimuthal angle ~p 
and rocking angle 8. The plot shows that a significant 
portion of the diffracted beam is circularly polarized, 
with a maximum P~ of _+ 60% at the center of the 
rocking curve and near the multiple-beam excitation. 
Since the 442 rocking-curve width is only a few Ix rad 
wide, a more realistic way of visualizing the effect is to 
use the P-integrated P ' ,  which is defined by taking a 
reflectivity[R(0)]-weighted average at a given ~: 

P ' =  E R(O~)P'(Oi)/~'. R(O,). 
i i 

The three components of P' are shown in Fig. 8, along 
with the 0-integrated intensity, as a function of 
azimuthal angle ~0. 

Let us examine more closely what happens to 
P' when we scan the azimuthal angle through the 
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multiple-beam reflection. Far away from the three- 
beam point, the diffracted beam is almost completely 
horizontally polarized, the same as the incident beam. 
A small fraction of P& exists because of the surface 
miscut of the crystal. When the three-beam point is 
approached, a portion of the diffracted beam turns 
into one of circular polarization P~, which reaches 
its maximum at the side of the multiple reflection 
peak. Within the multiple reflection peak the linear 
component P'~ continues to drop but is mainly conver- 
ted to a 45°-tilt linear component P~, while the cir- 
cular component P~ goes through zero and changes 
its handedness at the other side of the peak. This 
implies that one can easily flip the handedness of the 
circular polarization by a small change in azimuthal 
angle, which is a valuable feature for a phase plate. 

This asymmetric line shape of P~ depends upon 
the structural phase triplet 8 of the multiple reflection 
and reverses its asymmetry when S changes its sign. 
This point can be easily seen from (6) and (3): 

P~ = 2 M ~  sin S/I, (7) 

for P1 = 1 in the incident beam. P~ does not depend 
on M ~  because of the assumption that the incident 
beam is purely o- polarized. An interesting applica- 
tion of (7) is that one could obtain the handedness 
phase information of a crystal if one analyzed the 
circular component in its multibeam diffracted 
intensity using linearly polarized incident X-rays. 
This would be an alternative method to the one dis- 
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Fig. 7. Calculated scattered circular-polarization component P~ 
of the GaAs 442/151 multiple reflection as a function of the 
rocking angle 0 and the azimuthal angle ~0. The incident polariz- 
ation is assumed to be purely ~ polarized, P=(100). The 
definitions of the zero points on both the 0 and q~ axes are 
arbitrary. 

cussed in the first example, where an incident beam 
having circular polarization is required. 

Concluding remarks 

We have extensively investigated the effect of polariz- 
ation mixing in a multiple-beam Bragg diffraction, 
using a new density-matrix formalism in the dynami- 
cal theory of N-beam diffraction. We have shown 
that the combination of the two effects, polarization 
mixing and multibeam interference, can provide 
several new and interesting applications of N-beam 
diffraction. First, using an elliptically polarized X-ray 
beam it is possible to obtain acentric phase in- 
formation from the asymmetric profile of a multiple- 
reflection peak. This would enable one to determine 
the handedness or polarity of a noncentrosymmetric 
crystal• Second, for a known crystal structure, the 
same intensity profile can be used to measure circular 
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Fig. 8. The top plot shows the calculated results of the integrated 
scattered polarization components P'= ( P] , P~, P~) versus the 
azimuthal angle ~0 for the GaAs 422/151 multiple reflection 
with a completely or-polarized incident beam, P=(100). The 
integrated intensities are shown in the lower plot. The 
azimuthal-angle origin is defined by the convention that the 
reciprocal vector ( -1 ,  1, 0) is lying on the diffraction plane, with 
a projection that is antiparallel to the incident wave vector ko. 
The surface normal of the crystal is assumed to be along the 
[111] direction. 
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polarization in the incident beam. For this purpose 
we have shown that the intensity profile within the 
multiple-reflection peak for a centrosymmetric crystal 
such as germanium can be used. Third, N-beam 
diffraction can produce circularly or elliptically polar- 
ized X-rays from a linear incident polarization and 
therefore can be used as an X-ray phase plate. With 
greater availability of synchrotron-radiation sources 
worldwide, it is our belief that the technique of multi- 
ple-beam diffraction will find more use, both in X-ray 
physics and crystallography and in synchrotron-radi- 
ation instrumentation. 

The author is grateful to K. D. Finkelstein and 
B. W. Batterman for many stimulating discussions. 
This work is supported by the United States National 
Science Foundation, through CHESS, under Grant 
No. DMR 90-21700. 
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Abstract 

Planar bibridged CunX2nL2 oligomers, where X is a 
halide ion and L a halide ion or neutral ligand, with 
values of n ranging from 1 to 7, occur in numerous 
copper(II) halides. Within the oligomers, each Cu n 
ion assumes an approximate square-planar primary 
coordination geometry. Common examples include 
Cu2,,~6 2- , Cu3X8 2- and CuaX2o anions and neutral 
species such as [CuC12(H20)2], [Cu2Br4(pyridine)2] 
and [Cu3CI6(CH3CN)2  ]. The oligomers aggregate 
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through the formation of long semicoordinate Cu-X 
linkages, creating stacks of oligomers. A wide variety 
of stacking arrangements (polytypes) is possible, 
corresponding to different sequences of relative trans- 
lations between adjacent oligomers. The ground states 
of a one-dimensional Hamiltonian are developed to 
account for a subset of the observed polytypism. 
Terms included in the Hamiltonian include quadratic 
(S,'Sj) nearest- and next-nearest-neighbor inter- 
actions, nearest-neighbor biquadratic [(Si" Sj) 2] 
interactions and nearest-neighbor XY-interaction 
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